<子部,天文算法类,推步之属,御制历象考成

钦定四库全书

御制厯象考成表卷九

土星表

土星年根表

土星周岁平行表

土星周日平行表

土星均数表

土星升度差表

土星距黄道表

土星距地表

土星年根表

土星年根表以距冬至及最高行正交行逐年列之前用纪年者乃厯元后逐年之干支也表名距冬至者乃逐年天正冬至次日子正土星平行距丑宫初度之宫度也【求逐年距冬至法厯元甲子年天正冬至土星平行应七宫二十三度一十九分四十四秒五十五微即厯元甲子年土星平行距冬至之数此后用加法如本年为平年则加三百六十五日之土星平行一十二度一十三分三十九秒四十九微二十三纤一十一忽三十芒即得次年距冬至之数如本年为闰年则加三百六十六日之土星平行一十二度一十五分四十秒二十五微三十一纤一十八忽三十六芒即得次年距冬至之数加满十二宫者去之满三十纤以上者进作一微不足三十纤者去之后仿此】最高行者乃逐年天正冬至次日子正最高过冬至之宫度也【求逐年最高行法厯元甲子年天正冬至最高应十一宫二十八度二十六分零六秒零五微即厯元甲子年最高过冬至之数此后用加法如本年为平年则加三百六十五日之最高行一分二十秒零八微四十八纤三十二忽四十五芒即得次年最高过冬至之数如本年为闰年则加三百六十六日之最高行一分二十秒二十一微五十九纤零二忽零六芒即得次年最高过冬至之数】正交行者乃逐年天正冬至次日子正正交过冬至之宫度也【求逐年正交行法厯元甲子年天正冬至正交应六宫二十一度二十分五十七秒二十四微即厯元甲子年正交过冬至之数此后用加法如本年为平年则加三百六十五日之正交行四十一秒五十一微二十纤零五十七芒即得次年正交过冬至之数如本年为闰年则加三百六十六日之正交行四十一秒五十八微一十二纤五十忽一十四芒即得次年正交过冬至之数】

用表之法如求康熙六十一年壬寅之年根则察本表纪年自厯元甲子年后第一壬寅为所求之年乃视壬寅所对各数録之其距冬至为十一宫零八度一十七分零三秒三十七微其最高行为十一宫二十九度一十六分五十三秒三十八微其正交行为六宫二十一度四十七分二十八秒五十七微也

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

土星周岁平行表

土星周岁平行表以土星平行及最高行正交行逐日列之其前用日数者自一日至三百六十六日之日数也表名平行者乃土星本轮自一日至三百六十六日之平行各数也【土星每日平行二分零三十六微零八纤零七忽零六芒累加之即得逐日平行之各数】最高行者乃土星本天自一日至三百六十六日之最高行各数也【最高每日行一十三微一十纤二十九忽二十一芒累加之即得逐日最高行之各数】正交行者乃自一日至三百六十六日之正交行各数也【正交每日行六微五十二纤四十九忽一十九芒累加之即得逐日正交行之各数】用表之法如求冬至后二十八日之土星平行及最高行正交行则察本表日数二十八所对各数録之其平行为五十六分一十六秒五十二微即二十八日土星平行之共数其最高行为六秒零九微即二十八日最高行之共数其正交行为三秒一十三微即二十八日正交行之共数也

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

土星周日平行表

土星周日平行表以一日内之时分秒递降列之表分两段第一段自一至三十者一时至三十时一分至三十分一秒至三十秒第二段三十一至六十者三十一时至六十时三十一分至六十分三十一秒至六十秒其所对之数则土星逐时逐分逐秒之平行数也【土星每日之平行用二十四时除之得五秒零一微三十纤二十忽一十八芒是为一时之平行累加之为逐时之平行逐分逐秒之平行皆同数而递降一位时之平行为分秒微分之平行为秒微纤秒之平行为微纤忽】用表之法如求一十六时二十五分三十六秒之土星平行则察本表一十六时所对之数为一分二十秒二十四微二十五分所对之数为二秒零五微三十八纤三十六秒所对之数为三微零五十四忽合计三数得一分二十二秒三十二微三十八纤五十四忽即所求之土星平行也

<子部,天文算法类,推步之属,御制历象考成,表卷九

土星均数表

土星均数表以引数宫度求初均及中分以星距日次引宫度求次均及较分初宫至五宫依次顺列于前六宫至十一宫依次逆列于后表名初均者乃土星本轮均轮所生之均数顺度为减逆度为加中分者则逐宫逐度次轮心距地心与最高距地心之较为六十分中之防分也【求中分之法以土星次轮心在最髙距地心之一○五六九一七四与土星次轮心在最卑距地心之九四三○八二六相减余一一三八三四八为一率六十分为二率逐宫逐度次轮心距地心与最高距地心相减余为三率求得四率即逐宫逐度之中分也求次轮心距地心之法详厯理求初均数篇】次均者乃次轮心在最高土星行次轮周逐宫逐度之次均数顺度为加逆度为减较分者则次轮心在最卑逐宫逐度之次均与次轮心在最高逐宫逐度之次均相较之数也【求较分之法设次轮心在最卑求得逐宫逐度之次均数与次轮心在最高逐宫逐度之次均数相减即得】

用表之法设土星引数为初宫四度一十分求初均及中分则察初宫四度一十分与初均所对之数为二十七分二十八秒其号为减即所求之初均其与中分所对之数为三秒即所求之中分也【初宫在上故用顺度】又设星距日次引为十一宫二十五度求次均及较分则察十一宫二十五度与次均所对之数为二十六分五十五秒其号为减即所求之次均其与较分所对之数为二分五十五秒即所求之较分也【十一宫在下故用逆度】若引数或星距日次引有零分者按中比例法求之

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

<子部,天文算法类,推步之属,御制历象考成,表卷九

土星升度差表

土星升度差表按两交前后分顺逆列之两交后六宫列于上两交前六宫列于下前后列距交本道度分顺逆以别加减中列逐宫逐度之升度差土星距交实行在上六宫者用顺度其号为减土星距交实行在下六宫者用逆度其号为加

用表之法以距交实行之宫对距交实行之度其纵横相遇即所求之升度差也设土星距交实行为一宫八度求升度差则察一宫八度所对之数为一分三十七秒即所求之升度差其号为减是为减差也若距交实行有零分者亦按中比例法求之

<子部,天文算法类,推步之属,御制历象考成,表卷九

土星距黄道表

土星距黄道表亦按两交前后分顺逆列之两交后之各宫列于上初宫至二宫系正交后在黄道北六宫至八宫系中交后在黄道南其数同两交前之各宫列于下三宫至五宫系中交前在黄道北九宫至十一宫系正交前在黄道南其数同前后列距交本道度中列逐宫逐度之星距黄道数【即次轮心距黄道之数】土星距交实行在上六宫者用顺度土星距交实行在下六宫者用逆度用表之法以距交实行之宫对距交实行之度其纵横相遇即所求之星距黄道线也设土星距交实行为初宫五度求星距黄道线则察初宫五度所对之数为三八二七○即所求之土星距黄道线也若距交实行有零分者亦按中比例法求之

<子部,天文算法类,推步之属,御制历象考成,表卷九

土星距地表

土星距地表按星距日次引宫度分顺逆列之初宫至五宫列于上六宫至十一宫列于下前后列星距日次引度中列逐宫逐度之星距地数【星距地者乃次轮心在中距土星行次轮周逐宫逐度之距地心线】土星距日次引在上六宫者用顺度土星距日次引在下六宫者用逆度

用表之法以星距日次引之宫对星距日次引之度其纵横相遇即所求之星距地心线也设土星距日次引为初宫一十二度求星距地心线则察初宫一十二度所对之数为一一○二一九四八即所求之星距地心线也若星距日次引有零分者亦按中比例法求之

<子部,天文算法类,推步之属,御制历象考成,表卷九

御制厯象考成表卷九

集海阁网站拥有大量的古籍文献资源,涵盖了各个领域的经典著作,为用户提供了丰富的知识宝库。
本站非营利性站点,以方便网友为主,仅供学习。
京ICP备2021027304号-3